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Spherical random-field systems with long-range interactions: 
general results and application to the Coulomb glass 
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Institut fiir Physikalische Chemie, Johannes-Gutenberg-Univenitit, Jakob-Welder-Weg 11, 
D-6500 Mainz, Federal Republic of Germany 

Received 14 January 1993 

Abstrad. A classical spherical random-field Hamiltonian ‘with long-range (power-law) 
interactions is investigated by means of the replica theory. Bath ferromagnetic and anti- 
ferromagnetic interactions are considered. The use of continuous variables instead of Ising 
variables in the spherical version of the model allows us to calculate the free energy exactly. 
The existence of an equilibrium phase transition is investigated based on the replica- 
symmetric solution. 

The results are applied to the Coulomb-glass model of interacting localized electrons 
in a disordered solid. This model is shown not to have an equilibrium phase transition for 
spatial dimensions D < 4. For D > 4 the model has a phase transition to an ordered phase; 
however, it does not have a phase transition to a ‘glassy’ phase. 

1. Introduction 

Classical Ising Hamiltonians with random fields are widely used in physics to model 
disordered systems. In disordered magnetic systems the Ising variable describes a spin 
and in disordered electronic systems with localized states (Pollak 1970, Efros and 
Shklovskii 1975, for a recent review see Pollak 1992) the Ising variable describes the 
occupation of a lattice site with an electron. The theoretical investigation of thermo- 
dynamic properties for random-field systems is a-difficult problem, even in the case 
of nearest-neighbour interactions (Imry and Ma 1975, Imbrie 1984, Fisher 1986, 
Bricmont and Kupiainen 1987, 1988).  the^ long-range character of the Coulomb 
interaction in the electronic system makes the problem much more difficult and has 
prevented a systematic study of the Coulomb system with a random field up to now. 
The question of whether the Coulomb system (which is sometimes called ‘Coulomb 
glass’) has an equilibrium phase transition to a ‘glassy’ phase, was first asked by Davies, 
Lee and Rice (1982, 1984) and Griinewald, Pohlmann, Schweitzer and Wurz (1982, 
1983). Their results based on numerical calculations of a modified Edwards-Anderson 
order parameter (Edwards and Anderson 1975) has been inconclusive with regard to 
a glass transition. Up to now the question whether there is an equilibrium phase 
transition or not has not been answered (Pollak 1992). 

Therefore it would be very useful to have a more simple model, which can be 
solved exactly and retai& some of the main characteristics of the original model. Such 
a model is the spherical version of the random-field model. Homreich and Schuster 
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(1982) investigated this model in the case of short-range interactions by means of the 
replica theory to eliminate the random fields. Instead of Ising variables the spherical 
model has soft (continuous) variables as was first introduced by Berlin and Kac (1952) 
for the nearest-neighbour Ising model. Later the spherical model was applied to systems 
with long-range interactions (Joyce 1966) and to spin glasses (Kosterlitz, Thouless and 
Jones 1976). Recently there has been a renewed interest in the spherical model for 
disordered systems (Jagannathan and Rudnick 1989, Jagannathan, Eva and Rudnick 
1991, Crisanti and Sommers 1992). The advantage of the spherical model is that the 
evaluation of the partition function is much easier because the trace over the variables 
becomes a multiple integral instead of a multiple sum in the case of Ising variables. 

In this paper the spherical random field Hamiltonian with long-range interactions, 
both ferro- and anti-ferromagnetic, is investigated by means of the replica theory, the 
results are applied to the Coulomb-glass problem. The paper is organized as follows: 
the model Hamiltonian is introduced in section 2. Section 3 summarizes the calculation 
of the free energy of the spherical random field model first given by Hornreich and 
Schnster (1982). The corresponding saddle-point equations are treated on the replica- 
symmetric level. The existence of a phase transition in the system with ferromagnetic 
interactions is discussed in section 4, while section 5 deals with the anti-ferromagnetic 
models. Special attention is laid on the Coulomb-glass system of interacting localized 
electrons in section 6. The existence of a phase transition is proved depending on the 
spatial dimension of the system and the nature of the low-temperature phase is studied. 
Finally section 7 is devoted to some conclusions and the discussion of the results. 

2. The model 

The spherical random field model consists of N = LD variables S; on the sites of a 
regular D-dimensional hypercubic lattice, which may represent, for instance, spins or 
electric charges. The model has pair interactions U, (which we take translational 
invariant for convenience) between the variables Sj and a quenched random field 'pi 
coupling linearly to the variables. The Hamiltonian of the model is given by: 

The field h is a symmetry-breaking field which is taken constant (h, = h )  for ferromag- 
netic interactions or alternating (hi = * h  for the two sublattices) for anti-ferromagnetic 
interactions. The values 'pi of the random field are independent random variables with 
a Gaussian probability distribution: 

The dynamic variables S, are continuous real variables ranging from -a, to a. To 
make the model well defined and to avoid states with diverging energy, a constraint 
on the values of the variables (the spherical constraint) is added 

N IS?=,. (3) 
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The trace of an operator 6 over the variables Si is given by a multiple integral (instead 
of a multiple sum in the king case) 

Tr d = j m  -m as, . .  . -m dS,S(;-F S:) 6. (4) 

The symmetric interaction matrix U has to be such that the energy is extensive 
(proportional to N) in the thermodynamic limit N + m. It must especially have a well 
defined lowest eigenvalue independent of N in the thermodynamic limit N + 00 (which 
is necessary for the existence of a ground state with an extensive energy). 

3. Calculation of the free energy of the system 

In this section we briefly summarize the derivation of the free energy of the spherical 
random field model given by Hornreich~and Schuster (1982). 

For any fixed realization {pi} of the random field the free energy is given by 

PF({(oJ) = -In Z({rpd) = -In Trexp[-PH({rpJ)I. ( 5 )  
The basic quantity under consideration is the quenched average of the free energy: 

The calculation of F involves an average over the logarithm of the partition function. 
The usual way to overcome this difficulty is the so-called replica trick first used by 
Edwards (1970) in the study of polymer physics. One writes 

1 
n-ro n In 2 =lim- (2" - 1) 

and 
n 

(7) 

The H" (a: = 1,. . . , n )  may be interpreted as identical non-interacting replicas of the 
system. Tr, is the trace over all variables Sq. Finally the free energy is calculated by 
interchanging the order of the pintegrals, the trace and the limit n --f 0. 

Using the Fourier-representation for the %functions originating from the spherical 
constraints in the trace (see equation (4)), the nth power of the partition function 2 
may be written as 

Averaging equation (9) with respect to the random fields and carrying out the Gaussian 
integrals over the variables Sp yields 
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with 

where h is the field vector of the symmetry-breaking field. The factor N in the exponent 
of equation (10) allows the application of the saddle-point method (In det V and hV-‘h 
are proportional to N for N + CO). In the thermodynamic limit N + 00 the free energy 
per site is given by 

- 1 - 1 . 1 -  1 -pf = --pF=--hm- (Zn  - 1) = lim-T({zmo}) 
N N n+o n n-o n 

where zm0 is the saddle point of the exponent in equation (10). The saddle point has 
to be determined from 

We now diagonalize the matrix V with respect to the site index i by applying the 
Fourier transformation, which involves diagonalizing the interaction matrix (I. The 
eigenvalues of U are denoted by uk. The matrix V is now given by 

To proceed further we assume that all zm0 are equal to z at the saddle point; that 
means we choose the replica-symmetric solution. In this case V can be diagonalized 
in the replica-index simply by applying the Fourier transformation to V.  If we insert 
these results into equation (13) and take the limit n + 0 equation (13) simplifies to the 
final form of the saddle-point equation in this limit (with z=  ps): 

Here uko is the eigenvalue of the interaction matrix belonging to k = 0 for ferromagnetic 
interactions or k = (T, . . . , T )  for anti-ferromagnetic interactions. Whereas the first 
term in the k-sum also arises in the corresponding equation of the system without 
random field, the second term is the result of the random field. Equation (15)  reduces 
to the correct result for the system without random field in the limit po+O. 

We now want to study the existence of a phase transition in the system without 
field ( h  = 0) in general. Therefore we assume that the k-sum in equation (15) may be 
transformed into an integral over the eigenvalues of the matrix U. With P ( u )  being 
the distribution of the eigenvalues of U of the matrix U, the saddle-point equation reads 

In order to look for a phase transition we have to check, whether equation (16) has 
a solution for all temperature or not. The real part of s has to be larger than -iumiD-this 
is the condition that ensures that the Gaussian integral over Sp in equation (9) may 
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be carried out in the limit n 4 0. If the integral on the right-hand side diverges for 
s+-$umi. the saddle-point equation (16) has a solution for all temperatures. Then 
the free energy and its derivatives are continuous functions of the temperature and no 
phase transition occurs. If the integral converges, however, a normal saddle point only 
exists for temperatures larger than a certain critical temperature T,. For temperatures 
below T, the saddle point sticks at its critical value. This sticking of the saddle point 
corresponds to a phase transition of the system (for a detailed discussion of this 
mechanism see for instance Berlin and Kac (1952)). In general one can distinguish 
three cases: 

1. The integral of the first term in equation (16), which corresponds to the pure 
system, diverges for s +tumin + 0. Then the integral of the second term diverges even 
stronger. Equation (16) has a solution for all temperatures and neither the pure system 
nor the system with random field has an equilibrium phase transition. 

2. The integral of the first term converges whereas that of the second term, which 
contains a stronger singularity, diverges. In this case the pure system has a phase 
transition; however, any small disorder (any non-zero p,,) destroys the transition. 

3. Both integrals converge. Then the pure system has a transition; however, it 
depends on the magnitude po of the random field whether the saddle-point equation 
of the system with random field has a solution  for all temperatures or not. If the 
magnitude p,, fulfils the equation 

21 lim $ duP(u)- .-*+”., I ( S + $ U ) ’  4 

a normal saddle point exists for all temperatures and no phase transition occurs. If 
the integral converges towards a value smaller than a the saddle point sticks for low 
temperatures and the system with random field also has a phase transition. 

In the case of a finite field h # 0 the saddle-point equation has a normal solution 
for any temperature and no phase transition occurs. 

4. Ferromagnetic interactions 

In the following we investigate a spherical random field system with long-range 
ferromagnetic interactions 

The interaction exponent U has to be larger than D to ensure that the ground state 
energy is proportional to N. The symmetry-breaking field is given by hi = h. Then the 
saddle-point equation reads 

where g(D, k) is the D-dimensional lattice sum 

g(D, k)= -exp(ikr) r = ( x l  ,..., xD), k = ( k ,  ,..., k D ) .  (20) 
1 
Irl 
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Table 1. Values of the interaction exponent U, for which a phase transition occurs (ferro- 
magnetic interactions). 

Dimension D Pure system Random field system 

1 l < u < 2  l < U < +  

3 3<u 3 C U < $  
2 2<u<4 2 < u < 3  

4 4 < u  4 C u < 6  
5 5<.7 s<u 

This lattice sum may be calculated by the method of Nijboer and de Wette (1957). It 
may be written as 

In order to look for a phase transition we have to check the convergence of the integrals 
in the saddle-point equation (19) for s+smin= -4Ung,,,. To do this we expand the 
lattice sum around its maximum, that is around k = 0: 

For higher exponents U, g(D, k, U )  has a regular maximum at k = 0, that means 
g( D, S U) - g( D, 0, U )  - k2 (for U = D t 2  a logarithmic correction arises). Hornreich 
and Schuster (1982) assumed a regular maximum in the spectrum of the interaction 
matrix in their discussion of the spherical random field model. While this is correct 
for short-range interactions, the assumption fails for long-range (power law) ferromag- 
netic interactions. 

Given the behaviour of the lattice sum for small k it is easy to study the existence 
of a phase transition. Inserting equation (22)  into the integrals in the saddle-point 
equation yields the following behaviour. The system without random field has a phase 
transition for D < D < 2D for dimensions D S 2. It has a transition even for short-range 
interactions (and therefore for any U >  D )  for dimensions D>2. These results have 
already been derived by Joyce (1966). The system with a finite random field undergoes 
a phase transition for D < U < 3D/2 for dimensions D s 4. It has a transition even for 
short-range interactions (and therefore for any U > D )  for dimensions D > 4. In the 
random field system the transition only occurs if the strength of the random field is 
small enough. The maximum value of qn is determined by equation (17). The values 
of the interaction exponent U for which a phase transition occurs in the pure system 
(without random field) and may occur in the random field system are summarized in 
table 1. 

g(D, k, U) - g (  D, 0, U) - Ikl'-D+ O ( k Z )  (for D < U < D+2). (22)  

5. Anti-ferromagnetic interactions 

In this section we investigate a spherical random field system with long-range anti- 
ferromagnetic interactions 

(23) 
U0 
r,j. 

U,.=- ' I "  ~ uo>o,u>o. 
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The symmetry-breaking field h is a staggered field h, = ih, corresponding to the two 
sublattices. The saddle-point equation and the lattice sum g(D,  k, 5)  are again given 
by equations (19) and (20). However, in the anti-ferromagnetic case U, > 0 the minimal 
value of s is given by s,,, = - U,g(D, ko, U) with ko = (T, . . . , T ) .  To study the conver- 
gence of the integrals in the saddle-point equation for s+smin we have to expand the 
lattice sum around the minimum point k = (T, . . . , T ) .  This point is a regular minimum 
in any dimension and, for any interaction exponent U >  0, that means 

It follows that the spherical model with long-range anti-ferromagnetic interactions 
shows the same behaviour as the model with short-range interactions (Hornreich and 
Schuster 1982). The pure system (without random field) has no phase transition for 
D 6 2, it has a transition for D > 2. The system with random field has no phase transition 
for D S 4, it has a transition for D > 4, provided that the strength of the random field 
is small enough (see equation (17)). These results are independent of the value of the 
interaction exponent U. 

6. The Coulomb glass 

The random-field model with ,long-range anti-ferromagnetic interactions is especially 
interesting, because for U = 1 it is identical to the so-called Coulomb glass. The 
Coulomb-glass model was first proposed by Efros and Shklovskii (1975) to describe 
the influence of the Coulomb interaction on the properties of localized electronic states 
in disordered insulators, for instance, in amorphous or doped crystalline semiconduc- 
tors. The long-range correlations caused by the Coulomb interaction are expected to 
strongly influence both equilibrium and non-equilibrium (such as transport) properties 
of the system. It was noticed by Davies et al (1982, 1984) and by Griinewald et al 
(1982, 1983) that there is a clear analogy between this model and a random field king 
model or a spin glass. They proposed that the electronic system may undergo a glass 
transition (which clarifies the origin of the term ‘Coulomb glass’). In these investigations 
order parameters were defined, which are similar to that of Edwards and Anderson 
(1975) for spin glasses. The new definitions, however, try to overcome the difficulties 
arising in the original definition in the presence of a random field. These order 
parameters were calculated numerically either by a Monte Carlo method (Davies et 
a1 1982, 1984)~or by solving local mean-field equations (Griinewald et a! 1982,1983). 
Although the values of the order parameters were found to increase from zero to a 
finite value with decreasing temperature, the question, whether there is a sharp transition 
or not, could not be answered definitely. The results were therefore inconclusive with 

In this section-we discuss the behaviour of the Coulomb glass model using the 
results of section 5. The Coulomb-glass model consists of N = LD sites of a regular 
hypercubic lattice. Each site may be occupied~ by a (localized) electron or not. The 
electrons couple to the random field pi and interact via an unscreened Coulomb 
potential, hopping terms are completely neglected due to strong localization. To 
preserve the charge neutrality each site of the lattice has to possess a compensating 
background charge. Here the particle-hole symmetric case is considered, that means 
the compensating charge has to be - e / 2 .  In this case the chemical potential is zero 

respect to an equilibrium phase transition. , .  ~. 
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in the grand canonical ensemble. The Hamiltonian of the model is given by 

ni = 

We want to study the spherical version of the Coulomb-glass model; that means we 
treat the occupation numbers ni as continuous variables and add the spherical constraint 

nf=,. N 
i 

The resulting model is exactly a spherical random field model with long-range anti- 
ferromagnetic interactions and U = 1. It follows that the spherical version of the 
Coulomb glass has no equilibrium phase transition for D S 4 .  It undergoes a phase 
transition for D > 4, provided that the strength of the random field is small enough 
(see equation (17)). 

In order to clarify the nature of the transition we calculate the mean staggered 
occupation number v, which is defined by 

where the variables j , ,  . . . , j D  count the lattice sites in the D spatial directions. The 
staggered occupation number v may he obtained from the free energy by 

For finite h the saddle-point equation has always a normal solution and the second 
term within the brackets is always zero because of the saddle-point condition. The first 
term can be calculated easily: 

We will now discuss the solutions of the saddle-point equation in the limit h + 0. Above 
the transition temperature of the model without field the saddle-point equation has a 
normal solution (where the denominator in equation (29) is finite) for h =0, therefore 
the staggered occupation number v goes to zero proportional to h in the limit h + 0. 
Below the transition temperature the saddle-point equation has no solution for h = 0. 
In the limit h + 0 we have 

s+$Uog(D,ko)-h forh+O (30) 

and the staggered occupation number v has a finite value depending on p. A more 
detailed study (see the appendix of this paper) shows v-e 
below the critical temperature. Obviously the above phase transition is a transition to 
an ordered phase with an altemating occupation of the sites. It is therefore no (electron) 
glass transition. 
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7. Discussion and outlook 

In this paper the spherical random field model with long-range (power-law) interactions 
is studied. The free energy of the system can be calculated exactly using the replica 
trick to eliminate the random fields. The saddle-point equations of the spherical model 
are treated on the replica-symmetric level. As usual in the spherical-model calculations 
the existence of a phase transition depends on the convergence properties of an integral 
over the eigenvalues of the interaction matrix. The behaviour of the ferromagnetic 
model is essentially different from that with anti-ferromagnetic interactions. The fer- 
romagnetic model undergoes a phase transition in any dimension D for certain values 
of the interaction exponent U and small enough po. For D > 4 the ferromagnetic model 
has a phase transition for any U. There is no simple dimensional shift that connects 
the behaviour of the random field model in D dimensions with that of the model 
without random field in D -2 dimensions. (Such a relation only exists if the spectrum 
of the interaction matrix has a regular minimum.) In contrast, the model with anti- 
ferromagnetic interactions has no phase transition for D s 4  for any interaction 
exponent 0. For D > 4  it has a transition for any U,, The model with long-range 
anti-ferromagnetic interactions shows the same behaviour as a model with short-range 
interactions and the relation Dy"f2 = Dp"d"" that connects the lower critical 
dimensions of the systems with and without random field is valid. 

These results are applied to the spherical version of the Coulomb-glass model which 
is a special case of the spherical random field model with anti-ferromagnetic interactions 
and U = 1. Consequently the model has no equilibrium phase transition for spatial 
dimensions D S 4  for any strength of the random field. For D > 4  the model has a 
phase transition for a small enough random field. In this case the low-temperature 
phase is an ordered phase corresponding to an alternating occupation of the lattice 
sites. A 'glassy' phase does not exist for the spherical.Coulomb-glass model in any 
dimension. This result may be seen as a hint that the original Coulomb-glass model 
(with Ising variables representing the occupation of the lattice sites) does not have a 
phase transition to a glassy state either.  it has to be pointed out here that we deal 
with an equilibrium phase transition; the question of whether the Coulomb glass has 
a dynamic glass transition (for a review see Pollak 1992) is not a subject of this paper.) 

It is interesting to compare the results of this paper with the work on a spherical 
version of spin glass (having random interactions instead of random fields) by Koster- 
litz, Thouless and Jones (1976), who found an equilibrium phase transition to a spin 
glass state. The question arises, whether the result of this paper is modified if the model 
has not only ~a random field but also structural disorder due to the random positions 
of impurities in a crystal which results in a random contribution to the interactions. 
A detailed study of this question as well as an investigation ofpossible replica-symmetry 
breaking remain tasks for the future. 

. 
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Appendix. Calculation of the staggered occupation number v 

In this appendix we study the case that the system has an equilibrium phase transition 
and investigate the behaviour of Y in the low-temperature phase of the system with 
h = 0. We first consider a finite magnitude h of the staggered field and then take the 
limit h + 0. Below the transition temperature of the system with h = 0, the saddle-point 
value of s is in lowest order in h given by 

(32) 

where the influence of the temperature is contained only in the factor t ( P ) .  Inserting 
equation (32) into the saddle-point equation for the system with finite field h yields 

SO = -4 uog(D, ko) + t ( P )  h 

where A ( h )  and B ( h )  are given by 

1 
A ( h )  =' 2 (L) 27r lozw dkl . . .'jo2" dkD 4Uo(g(D, k) -g(D, k,)) + t ( P ) h  

(34) 
1 =' 2 (') 27r jOzw dkl . ' ' lo2- dkD [fUo(g(D, k )  -g(D, ko)) + t ( p ) h I 2 '  

The limiting values of A ( h )  and B ( h )  for h+O are denoted by A, and Bo. They are 
finite, because A ( h )  and B ( h )  are essentially the integrals on the right-hand side of 
the saddle-point equation. These integrals must converge for s +  -$Uog(D, k,) to get 
a phase transition. In the limit h + O  equation (33) reads 

Inserting equations (32) and (35) into equation (29) for the staggered occupation 
number U gives 

with 

These results hold for any temperature below T ,  not only for temperatures near T.. 
The critical exponent p has its usual spherical model value 1. The critical strength of 
the random field above which the phase transition disappears may be derived from 
equation (36).  It is given by T,(pJ=O from which follows pE=fBo. This result may 
also be derived directly from the general equation (17). The zero-temperature value 
v, of the staggered occupation number depends on po. This result is due to the, use 
of continuous variables in the spherical model. 
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